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Abstract
We investigated the quantum states of a free electron with time-dependent
effective mass subjected to a time-dependent magnetic field by solving the
Schrödinger equation under the choice of Landau and symmetric gauges. Using
the invariant operator and unitary transformation methods together, we derived
exact wavefunctions of the system. The wavefunctions rely on the solution
of associated classical dynamical systems. We confirmed that the quantum
analysis of the system under the two gauges coincides mutually.

1. Introduction

The study of quantum systems with time-dependent masses [1–4] as well as with position-
dependent masses [5–9] has been a widespread subject and may be applied to various branches
of physics. For instance, Colegrave et al used them to investigate the field intensities in a
Fabry–Perot cavity [10] and they suggested possible applications to solid state physics and
quantum field theory [11]. Remaud et al [12] found that a varying mass parameter offers a
means of simulating an input or removal of energy from the system. They remark that, if energy
is supplied to an oscillator in a periodic cycle of time, the resulting dynamics can be described
by a function of periodic mass. The wavefunctions, uncertainty relations and propagators are
obtained for the harmonic oscillator with an exponentially decaying mass [13]. The exact
quantum theory of a pendulum with a linearly decreasing mass was constructed [14]. In any
system, the charged particles, such as electrons or holes, may interact with the circumference
or various excitations such as temperature [15], pressure [16], stress [17] and energy [18],
resulting in modifications to the effective masses. If the environment changes as time goes by,
the effective masses may naturally vary, depending on time. When the external field changes
randomly, the electron effective mass in the heterojunctions and solid solutions may be varied
in a random fashion according to the fluctuation of the composition of the system [19].

One of the most powerful methods to solve the time-dependent quantum systems is the
invariant operator method that was introduced initially by Lewis [20, 21]. We will use the
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invariant operator and unitary transformation methods together in order to investigate the
exact quantum state of the system. The key idea in solving the harmonic oscillator with time-
dependent mass is that the solution (wavefunction) of the Schrödinger equation for a time-
dependent Hamiltonian system is the same as the eigenstate of the corresponding invariant
operator, except for some time-dependent phase factor [22].

The quantum state of an electron moving in a two-dimensional plane with constant effective
mass has been investigated in [23]. We will do the same for the system that replaced the ordinary
effective mass with a time-dependent effective mass. Although many actual dynamical systems
have been solved approximately using perturbation theory [24–26],we will confine our concern
with the investigation of the exact quantum theory of the system. In most of the cases, the
evolution of the time-dependent systems are periodic. Our discussion in this paper can be
applied to quadratic Hamiltonian systems with random time dependence as well as time-
periodic ones. Hagedorn et al [27] studied the relation between the classical and quantum
motions associated with time-dependent quadratic Hamiltonians. The wavefunctions rely on
the solution of the associated classical dynamical systems.

2. Quantum electronic structure with the choice of Landau gauge

We consider a free electron subject to a time-dependent vector potential A(t) in a two-
dimensional plane with a time-dependent effective mass, m∗(t). This system can be described
by the following Hamiltonian:

Ĥ = 1

2m∗(t)
[p̂ − eA(t)]2, (2.1)

where −e is the charge of the electron. The magnetic field can be written in terms of A(t) as

B(t) = ∇ × A(t). (2.2)

We are free to choose the gauge, since the gauge transformation has no effect on any physical
result. With the choice of Landau gauge, we can write the vector potential as

A(t) = (0, B(t)x̂, 0). (2.3)

Then, equation (2.1) becomes the Hamiltonian of the one-dimensional time-dependent
harmonic oscillator [23]:

Ĥ = − h̄2

2m∗(t)

(
d2

dx̂2
+

d2

d ŷ2

)
+

1

2
m∗(t)ω2

c (t)[x̂ − �(t)]2, (2.4)

where �(t) and ωc(t) are given by

�(t) = h̄

eB(t)
kq, (2.5)

ωc(t) = eB(t)

m∗(t)
. (2.6)

In equation (2.5), kq is the wavenumber in the ŷ direction. We impose periodic boundary
conditions along the ŷ direction over a distance L:

ψn(x̂, ŷ, t) = ψn(x̂, ŷ + L, t). (2.7)

Then, kq is given by

kq = 2πq

L
, q = 0,±1,±2, . . . . (2.8)
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The Hamiltonian, equation (2.4), can be separated into x̂ and ŷ components as

Ĥ = Ĥx + Ĥy, (2.9)

where

Ĥx = − h̄2

2m∗(t)
d2

dx̂2
+

1

2
m∗(t)ω2

c (t)[x̂ − �(t)]2, (2.10)

Ĥy = − h̄2

2m∗(t)
d2

d ŷ2
. (2.11)

Equation (2.10) is the same as that of a time-dependent harmonic oscillator centred at �(t),
while equation (2.11) is the same as that of a time-dependent free particle.

We can write the whole Schrödinger equation of the system as

ih̄
∂ψn(x̂, ŷ, t)

∂ t
= Ĥψn(x̂, ŷ, t). (2.12)

The wavefunctions must be separable into x̂ and ŷ components. We therefore suppose that the
wavefunctions can be expressed in the form

ψn(x̂, ŷ, t) = un(x̂, t)v(ŷ). (2.13)

Note that, in equation (2.13), we tied the time variable to the coordinate x̂ . By substituting
equations (2.9) and (2.13) into equation (2.12), we find that

h̄2

2v(ŷ)

d2v(ŷ)

d ŷ2
= −ih̄

m∗(t)
un(x̂, t)

∂un(x̂, t)

∂ t
− h̄2

2un(x̂, t)

d2un(x̂, t)

dx̂2

+ 1
2 m∗2

(t)ω2
c (t)[x̂ − �(t)]2 = −Eq, (2.14)

where Eq is the separation constant with the dimension of energy times mass. Then,
equation (2.14) can be reexpressed with x̂ and ŷ components separately:

ih̄
∂un(x̂, t)

∂ t
= H ′

x(x̂, p̂x, t)un(x̂, t), (2.15)

d2v(ŷ)

d ŷ2
+

2Eq

h̄2 v(ŷ) = 0, (2.16)

where

Ĥ ′
x(x̂, p̂x, t) = p̂2

x

2m∗(t)
+

1

2
m∗(t)ω2

c (t)[x̂
2 − 2�(t)x̂ + �2(t)] +

Eq

m∗(t)
. (2.17)

The normalized solution of equation (2.16) is given by

v(ŷ) = 1√
L

exp(ikq ŷ) (2.18)

and the relation between kq and Eq is

kq =
√

2Eq

h̄2 . (2.19)

To solve the x̂ component of the Schrödinger equation, we introduce the invariant operator,
Îx(t), that can be written as

Îx(t) = α(t)[ p̂x − px,p(t)]2 + β(t){[x̂ − xp(t)][ p̂x − px,p(t)] + [ p̂x − px,p(t)][x̂ − xp(t)]}
+ γ (t)[x̂ − xp(t)]

2, (2.20)
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where the time-dependent coefficients α(t), β(t) and γ (t) must be determined afterward and
xp(t) and px,p(t) are particular solutions of the classical equation of motion for the x̂ component
in coordinate and momentum space, respectively. They satisfy the following relations:

ẋp(t) = 1

m∗(t)
px,p(t), (2.21)

ṗx,p(t) = −m∗(t)ω2
c (t)[xp(t) − �(t)]. (2.22)

Because of its definition, the invariant operator must satisfy the relation

d Îx(t)

dt
= ∂ Îx(t)

∂ t
+

1

ih̄
[ Îx(t), Ĥ ′

x] = 0. (2.23)

By substituting equations (2.17) and (2.20) into (2.23), we can derive α(t) − γ (t) as

α(t) = c1ρ
2
+(t) + c2ρ

2
−(t), (2.24)

β(t) = −m∗(t)[c1ρ+(t)ρ̇+(t) + c2ρ−(t)ρ̇−(t)], (2.25)

γ (t) = m∗2
(t)[c1ρ̇

2
+(t) + c2ρ̇

2
−(t)], (2.26)

where ρ±(t) are the two independent classical solutions of the following differential equation:

ρ̈±(t) +
ṁ∗(t)
m∗(t)

ρ̇±(t) + ω2
c(t)ρ±(t) = 0. (2.27)

To derive the eigenstate of the invariant operator, we introduce the unitary operator Û as

Û = Û3Û2Û1, (2.28)

where

Û1 = exp

(
i

h̄
xp p̂x

)
exp

(
− i

h̄
px,p x̂

)
, (2.29)

Û2 = exp

(
iβ

2αh̄
x̂2

)
, (2.30)

Û3 = exp

{
i

4h̄
(x̂ p̂x + p̂x x̂) ln[2αm∗(0)]

}
. (2.31)

Then, we can transformation equation (2.20) with (2.28) into a very simple form:

Î ′
x = Û Îx Û † = p̂2

x

2m∗(0)
+

1

2
m∗(0)ω2 x̂2, (2.32)

where ω2 is a constant given by the relation

ω2 = 4(αγ − β2) = 4c1c2m∗2
(t)(ρ+ρ̇− − ρ̇+ρ−)2. (2.33)

The eigenvalue equation of Î ′
x can be written as

Î ′
xφ

′
n(x̂, t) = λnφ

′
n(x̂, t). (2.34)

Since equation (2.32) is just the same as the Hamiltonian of a simple harmonic oscillator, we
can easily identify φ′

n(x̂, t) as

φ′
n(x̂, t) = 4

√
m∗(0)ω

h̄π

1√
2nn!

Hn

(√
m∗(0)ω

h̄
x̂

)
exp

(
−m∗(0)ω

2h̄
x̂2

)
, (2.35)

where Hn is an nth-order Hermite polynomial and λn is

λn = h̄ω(n + 1
2 ), n = 0, 1, 2, . . . . (2.36)
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The eigenstate of an untransformed invariant operator, Îx , can be derived from

φn(x̂, t) = Û †φ′
n(x̂, t). (2.37)

Making use of equation (2.28) with (2.35), we can calculate equation (2.37) as

φn(x̂, t) = 4

√
ω

2αh̄π

1√
2nn!

Hn

(√
ω

2αh̄
(x̂ − xp)

)
exp

(
i

h̄
px,p x̂

)

× exp

[
− 1

2αh̄

(
ω

2
+ iβ

)
(x̂ − xp)

2

]
. (2.38)

The wavefunctions of the x̂ component, un(x̂, t), differs from the eigenstate of the invariant
operator only by some time-dependent phase factor, δn(t) [22]:

un(x̂, t) = φn(x̂, t) exp[iδn(t)]. (2.39)

The phase factor can be derived by substituting equation (2.39) into (2.15) as

δn(t) = −ω

(
n +

1

2

) ∫ t

0

1

2α(t ′)m∗(t ′)
dt ′ − 1

h̄

∫ t

0
H ′

x,p(xp(t
′), px,p(t

′), t ′) dt ′, (2.40)

where

H ′
x,p(xp(t), px,p(t), t) = p2

x,p(t)

2m∗(t)
+

1

2
m∗(t)ω2

c (t)[x
2
p(t) − 2�(t)xp(t) + �2(t)] +

Eq

m∗(t)
.

(2.41)

Thus, the full wavefunctions can be described exactly in terms of equations (2.13), (2.18)
and (2.39) with (2.38) and (2.40).

Now, let us investigate a special case: that described by a constant angular frequency 

so that the motion is periodic:

ωc(t) = (≡ constant). (2.42)

The time-dependent effective mass is given by

m∗(t) = m + m0e−κ t (2.43)

where m, m0 and κ are real constants with the condition m � m0. Then, equation (2.27)
becomes

ρ̈±(t) − m0κ

m
e−κ t ρ̇±(t) + 2ρ±(t) � 0. (2.44)

The classical solutions of equation (2.44) can be derived as

ρ+(t) = eit
1 F1

(
i

κ
, 1 +

2i

κ
,−m0

m
e−κ t

)
, (2.45)

ρ−(t) = eit
1 F1

(
− i

κ
, 1 − 2i

κ
,−m0

m
e−κ t

)
, (2.46)

where 1 F1(a; b; Z) is the Kummer confluent hypergeometric function [28]. In terms of
equations (2.45) and (2.46), the wavefunction equation (2.39) can be explicitly represented.
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3. Quantum state of electrons with the choice of symmetric gauge

None of the gauge transformations will affect the physical quantities. We will do the same
thing as in the previous section by choosing a symmetric gauge which can be expressed by the
following vector potential [23]:

A(t) =
(

−B(t)

2
ŷ,

B(t)

2
x̂, 0

)
. (3.1)

The Hamiltonian corresponding to equation (3.1) is

Ĥ(x̂, p̂x, ŷ, p̂y, t) = 1

2m∗(t)

[(
p̂x +

eB(t)

2
ŷ

)2

+

(
p̂y − eB(t)

2
x̂

)2

+ p̂2
z

]

= − h̄2

2m∗(t)

(
d2

dx̂2
+

d2

d ŷ2
+

d2

dẑ2

)
+

1

8
m∗(t)ω2

c (t)(x̂2 + ŷ2)

− 1

2
ωc(t)(x̂ p̂y − ŷ p̂x). (3.2)

The Schrödinger equation related to Ĥ can be written as

ih̄
∂ψnx ,ny (x̂, ŷ, ẑ, t)

∂ t
= Ĥψnx ,ny (x̂, ŷ, ẑ, t). (3.3)

We can transform equation (3.3) with some unitary operator V̂0:

Ĥ′ = V̂ −1
0 ĤV̂0 − ih̄V̂ −1

0

∂ V̂0

∂ t
. (3.4)

We choose V̂0 in the form

V̂0 = exp

[
− iϕ

2h̄
(ŷ p̂x − x̂ p̂y)

]
, (3.5)

where ϕ is given by

ϕ =
∫ t

ωc(t
′) dt ′ + δ. (3.6)

In the above equation, δ is the integral constant. Then, the transformed Hamiltonian can be
calculated as

Ĥ′ = 1

2m∗(t)
( p̂2

x + p̂2
y + p̂2

z ) +
1

8
m∗(t)ω2

c (t)(x̂2 + ŷ2). (3.7)

Let us write the Schrödinger equation related to Ĥ′ as

ih̄
∂ψ ′

nx ,ny
(x̂, ŷ, ẑ, t)

∂ t
= Ĥ′ψ ′

nx ,ny
(x̂, ŷ, ẑ, t). (3.8)

The solutions of the above equation are derived by separating variables:

ψ ′
nx ,ny

(x̂, ŷ, ẑ, t) = u′
nx ,ny

(x̂, ŷ, t)v′(ẑ). (3.9)

Then, using the same method as in the previous section, we can separate variables as

ih̄
∂u′

nx ,ny
(x̂, ŷ, t)

∂ t
= Ĥ′

xy(x̂, p̂x, ŷ, p̂y, t)u′
nx ,ny

(x̂, ŷ, t), (3.10)

d2v′(ẑ)
dẑ2

+
2E ′

q

h̄2 v′(ẑ) = 0, (3.11)
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where Ĥ′
xy(x̂, p̂x, ŷ, p̂y, t) is given by

Ĥ′
xy(x̂, p̂x, ŷ, p̂y, t) = 1

2m∗(t)
( p̂2

x + p̂2
y) +

1

8
m∗(t)ω2

c (t)(x̂2 + ŷ2) +
E ′

q

m∗(t)
. (3.12)

The corresponding solution of equation (3.11) can be written as

v′(ẑ) = 1√
L

exp(ik ′
q ẑ). (3.13)

where k ′
q is given by

k ′
q =

√
2E ′

q

h̄2 . (3.14)

Let us denote the invariant operator related to equation (3.12) as Îxy(t), and assume its trial
form as

Îxy(t) = α1(t) p̂2
x + β1(t)(x̂ p̂x + p̂x x̂) + γ1(t)x̂2 + α2(t) p̂2

y + β2(t)(ŷ p̂y + p̂y ŷ) + γ2(t)ŷ2,

(3.15)

where the coefficients αi (t), βi(t) and γi (t) (i = 1, 2) must be determined afterward. Then, it
satisfies the relation given by

d Îxy(t)

dt
= ∂ Îxy(t)

∂ t
+

1

ih̄
[ Îxy(t), Ĥ′

xy ] = 0. (3.16)

By substituting equations (3.12) and (3.15) into (3.16), we can easily derive αi (t) − γi(t) as

α1(t) = cx1ρ
2
x+(t) + cx2ρ

2
x−(t), (3.17)

β1(t) = −m∗(t)[cx1ρx+(t)ρ̇x+(t) + cx2ρx−(t)ρ̇x−(t)], (3.18)

γ1(t) = m∗2
(t)[cx1ρ̇

2
x+(t) + cx2ρ̇

2
x−(t)], (3.19)

α2(t) = cy1ρ
2
y+(t) + cy2ρ

2
y−(t), (3.20)

β2(t) = −m∗(t)[cy1ρy+(t)ρ̇y+(t) + cy2ρy−(t)ρ̇y−(t)], (3.21)

γ2(t) = m∗2
(t)[cy1ρ̇

2
y+(t) + cy2ρ̇

2
y−(t)], (3.22)

where ρx±(t) and ρy±(t) are the two independent real classical solutions of the following
differential equation:

ρ̈x±(t) +
ṁ∗(t)
m∗(t)

ρ̇x±(t) +
ω2

c (t)

4
ρx±(t) = 0, (3.23)

ρ̈y±(t) +
ṁ∗(t)
m∗(t)

ρ̇y±(t) +
ω2

c (t)

4
ρy±(t) = 0. (3.24)

To derive the eigenstate of the invariant operator, let us transform equation (3.15) as

Î ′
xy = V̂ Îxy V̂ †, (3.25)

where the unitary operator V̂ is given by

V̂ = V̂2V̂1, (3.26)

with

V̂1 = exp

(
iβ1

2α1h̄
x̂2

)
exp

(
iβ2

2α2h̄
ŷ2

)
, (3.27)

V̂2 = exp

{
i

4h̄
(x̂ p̂x + p̂x x̂) ln[2α1m∗(0)]

}
exp

{
i

4h̄
(ŷ p̂y + p̂y ŷ) ln[2α2m∗(0)]

}
. (3.28)
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Then, the transformed invariant operator can be written simply as

Î ′
xy = 1

2m∗(0)
( p̂2

x + p̂2
y) +

1

2
m∗(0)(ω2

1 x̂2 + ω2
2 ŷ2), (3.29)

where ω2
1 and ω2

2 are constants given by the relation

ω2
1 = 4(α1γ1 − β2

1 ) = 4cx1cx2m∗2
(t)(ρx+ρ̇x− − ρ̇x+ρx−)2, (3.30)

ω2
2 = 4(α2γ2 − β2

2 ) = 4cy1cy2m∗2
(t)(ρy+ρ̇y− − ρ̇y+ρy−)2. (3.31)

The eigenvalue equation of Î ′
xy can be written as

Î ′
xyφ

′
nx ,ny

(x̂, ŷ, t) = λnx ,ny φ
′
nx ,ny

(x̂, ŷ, t). (3.32)

Since equation (3.29) is just the same as the Hamiltonian of a simple harmonic oscillator, we
can easily identify φ′

nx ,ny
(x̂, ŷ, t) as

φ′
nx ,ny

(x̂, ŷ, t) =
√

m∗(0)(ω1ω2)1/2

h̄π

1√
2nx +ny nx !ny!

Hnx

(√
m∗(0)ω1

h̄
x̂

)

× Hny

(√
m∗(0)ω2

h̄
ŷ

)
exp

(
−m∗(0)

2h̄
(ω1 x̂2 + ω2 ŷ2)

)
(3.33)

and λnx ,ny as

λnx ,ny = h̄ω1(nx + 1
2 ) + h̄ω2(ny + 1

2 ), nx(y) = 0, 1, 2, . . . . (3.34)

The eigenstate of the untransformed invariant operator, Îxy , can be derived from

φnx ,ny (x̂, ŷ, t) = V̂ †φ′
nx ,ny

(x̂, ŷ, t). (3.35)

Using equation (3.26), the above equation can be calculated as

φnx ,ny (x̂, ŷ, t) =
√

(ω1ω2)1/2

2h̄π(α1α2)1/2

1√
2nx +ny nx !ny!

Hnx

(√
ω1

2α1h̄
x̂

)
Hny

(√
ω2

2α2h̄
ŷ

)

× exp

[
− 1

2α1h̄

(
ω1

2
+ iβ1

)
x̂2 − 1

2α2h̄

(
ω2

2
+ iβ2

)
ŷ2

]
. (3.36)

The wavefunctions of the x̂ and ŷ components, u′
nx ,ny

(x̂, ŷ, t), differ from the eigenstates of
the invariant operator only by some time-dependent phase factor, δnx ,ny (t) [22]:

u′
nx ,ny

(x̂, ŷ, t) = φnx ,ny (x̂, ŷ, t) exp[iδnx ,ny (t)]. (3.37)

By substituting equation (3.37) into (3.10), we can easily derive the phase factor as

δnx ,ny (t) = −ω1

(
nx +

1

2

) ∫ t

0

1

2α1(t ′)m∗(t ′)
dt ′ − ω2

(
ny +

1

2

) ∫ t

0

1

2α2(t ′)m∗(t ′)
dt ′. (3.38)

The wavefunctions of the system in a symmetric gauge can be calculated from

ψnx ,ny (x̂, ŷ, ẑ, t) = V̂0ψ
′
nx ,ny

(x̂, ŷ, ẑ, t). (3.39)

Using equations (3.5) and (3.9) with (3.13) and (3.37), the above equation can be written as

ψnx ,ny (x̂, ŷ, ẑ, t) = φnx ,ny (X̂ , Ŷ , t) exp[iδnx ,ny (t)]v
′(ẑ) =

√
(ω1ω2)1/2

2h̄π L(α1α2)1/2

1√
2nx +ny nx !ny!

× Hnx

(√
ω1

2α1h̄
X̂

)
Hny

(√
ω2

2α2h̄
Ŷ

)
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× exp

[
− 1

2α1h̄

(
ω1

2
+ iβ1

)
X̂2 − 1

2α2h̄

(
ω2

2
+ iβ2

)
Ŷ 2

]

× exp(ik ′
q ẑ) exp

[
−iω1

(
nx +

1

2

) ∫ t

0

1

2α1(t ′)m∗(t ′)
dt ′

− iω2

(
ny +

1

2

) ∫ t

0

1

2α2(t ′)m∗(t ′)
dt ′

]
, (3.40)

where (
X̂
Ŷ

)
=

(
cos ϕ

2 − sin ϕ

2

sin ϕ

2 cos ϕ

2

) (
x̂
ŷ

)
. (3.41)

In the calculation of equation (3.40), we used the identity given by

exp

[
ϕ

(
ŷ

∂

∂ x̂
− x̂

∂

∂ ŷ

)]
f (x̂, ŷ) = f (x̂ cos ϕ + ŷ sin ϕ,−x̂ sin ϕ + ŷ cos ϕ). (3.42)

4. Summary and discussion

We used the dynamical invariant method to obtain quantum solutions of an electron moving
under vector potential with time-dependent effective mass. With the choice of the Landau
gauge, the Schrödinger equation is reduced to that of a one-dimensional time-dependent
harmonic oscillator. The invariant operator can be expressed in terms of classical particle
solutions, xp and px,p, of the equation of motion.

We also derived quantum solutions for the choice of the symmetric gauge given in
equation (3.1). If we consider the revolving motion of an election in the x–y plane under
this gauge, the excitations and frequencies of x̂ and ŷ components are naturally the same as
each other:

nx = ny ≡ n0, (4.1)

ω1 = ω2 ≡ ω0. (4.2)

Then, equation (3.34) can be rewritten as

λnx ,ny = 2h̄ω0(n0 + 1
2 ). (4.3)

By comparing equations (2.17) and (3.12), we can confirm that the frequency in the symmetric
gauge is half of that in the Landau gauge:

ω0 = 1
2ω. (4.4)

Therefore, equation (4.3) exactly reduces to equation (2.36) which is obtained under the Landau
gauge.
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